Lecture No 11th - PCFM

Economic/Financial Analysis of Projects

Future Value of Annuity (Ordinary).

$$FV_{Ordinary\ Annuity} = A * \left[\frac{(1+i)^n - 1}{i} \right]$$

```
FV Ordinary Annuity = A * FVFA i,n

FV Ordinary Annuity = 1000 * 5.52564

FV Ordinary Annuity = $5525.64
```


Future Value of an Ordinary Annuity = \$5525.64

Future Value of Annuity (Due).

$$FV_{Annuity Due} = A^* \left[\frac{(1+i)^n - 1}{i} \right]^* (1+i)$$

FV Ordinary Annuity = A * FVFA i,n * (1+i) FV Ordinary Annuity = 1000 * 5.52564 * (1+5%) FV Ordinary Annuity = \$ 5,801

PV = Present Value.

PV is the value today of a future cash flow.

$$PV = FV * { 1 / (1+i)^n }$$

= $FV * P V F_{i,n}$

= FV* Present Value Factor for i and n.

PV of Annuity Ordinary and Due.

PV of an Ordinary Annuity =
$$A * \frac{1 - (1 + i)^{-n}}{i}$$

PV of an Annuity Due =
$$A * \frac{1 - (1 + i)^{-n}}{i} * (1 + i)$$

Payback Period (Pb)

Pb is the period of time required for the cumulative expected cash flows from an investment project to equal the initial cash outflow.

Determines *how long* it takes for a project to reach a breakeven point. <u>Lower</u> numbers of Pb are <u>better</u> (faster payback).

$$Payback\ Period = \frac{Investment}{Annual\ Cash\ Savings}$$

	Find Pay Back Period of following CFs.				
	19-4-14	19-4-15	19-4-16	19-4-17	19-4-18
Cash Flow	(\$200,000)	\$60,000	\$60,000	\$60,000	\$60,000

Payback Period For unequal cash flows

A project requires initial investment of \$200,000 and is expected to generate cash savings of \$85,000, 70,000, 90,000 and 40,000 respectively in coming years. What is the payback period?

Year	Cash Flow	Cumulative
0	(\$200,000)	(\$200,000)
1	\$85,000	(115,000)
2	\$75,000	(40,000)
3	\$90,000	50,000
4	\$40,000	90,000

Payback Period Practice Qs

TABLE 10.1

Capital Expenditure Data for Bennett Company

Project A	Project B	
\$42,000	\$45,000	
Operating cash inflows		
\$14,000	\$28,000	
14,000	12,000	
14,000	10,000	
14,000	10,000	
14,000	10,000	
	\$42,000 Operating of \$14,000 14,000 14,000	

FIGURE 10.1

Bennett Company's Projects A and B Time lines depicting the conventional cash flows of projects A and B

Payback Period Practice Qs

TABLE 10.2

Relevant Cash Flows and Payback Periods for DeYarman Enterprises' Projects

	Project gold	Project silver \$50,000	
Initial investment	\$50,000		
Year	Operating		
1	\$ 5,000	\$40,000	
2	5,000	2,000	
3	40,000	8,000	
4	10,000	10,000	
5	10,000	10,000	
Payback period	3 years	3 years	

PBP (Payback Period) Acceptance Criterion

The management of *Telenor* has set a maximum PBP of 3 years for acceptance of their projects.

If PBP of a project is 2.44yrs, Should this project be accepted?

Yes! Because the firm will receive back the initial cash outlay in less than 3 years. [2.44 Years < 3 Year Max.]

PBP Strengths and Weaknesses

Strengths:

Easy to use and understand

Can be used as a measure of liquidity

Easier to forecast ST than LT flows

Weaknesses:

Does not account for TVM

Does not consider cash flows beyond the PBP

Cutoff period is subjective